

Disclaimer I've been doing collider physics....

Search for resonant top plus jet production in $t\bar{t}$ + jets events with detector in pp collisions at $\sqrt{s}=7\,\mathrm{TeV}$

Measurement of ZZ production in pp collisions at $\sqrt{s}=7~{\rm TeV}$ and limits on anomalous ZZZ and $ZZ\gamma$ couplings with the ATLAS detector

Search for a heavy particle decaying to a top quark and a light quark in $p\bar{p}$ collisions at $\sqrt{s}=1.96~{\rm TeV}$

Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at $\sqrt{s}=7$ TeV with the ATLAS detector

Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions a $\sqrt{s}=7~{\rm TeV}$ with the ATLAS detector

Search for Dark Matter Candidates and Large Extra Dimensions in event photon and missing transverse momentum in pp collision data at $\sqrt{s} = 7$ TeV ATLAS detector

Triangulating an exotic T quark

Search for a heavy vector boson decaying to two gluons in $p\bar{p}$ collisions at $\sqrt{s}=1.96~{\rm TeV}$

Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons

... I am not (yet) an astro-physicist!

Outline

- I. Introduction
- II. The line
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

DM: what do we know?

known unknown
known known

What do we hope?

Non-gravitational interaction

Weak-level interaction
Mediated by massive particles
Gives the right relic density

Interaction

Interaction

Probes

Collider (ATLAS etc)

Direct

Indirect (Xenon etc) (FermiLAT etc)

Photons

$$E_{\gamma} = m_{\chi}$$

Fermi

Detector

Performance

For true photon energy of 130 GeV

Outline

- I. Introduction
- II. The line
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

Fermi results

FermiLAT 1205.2739 May 2012

The line

Weniger 1204.2797 May 2012

The line

Weniger 1204.2797 May 2012

Search took 0.02 seconds.

1. Electroweak Baryogenesis And The Fermi Gamma-Ray Line

Jonathan Kozaczuk, Stefano Profumo, Carroll L. Wainwright. N/A. 33 pp.

e-Print: arXiv:1302.4781 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record

2. On the importance of loop-induced spin-independent interactions for dark matter direct detection

Ulrich Haisch, Felix Kahlhoefer, N/A. 18 pp.

OUTP-13-06P

e-Print: arXiv:1302.4454 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record

3. Towards the origin?

Daniel Treille (Zurich, ETH). 32 pp.

CERN-OPEN-2012-026

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

CERN Document Server; Link to Fulltext

Detailed record

4. A two-loop Radiative Seesaw with multi-component Dark Matter explaining the possible gamma Excess in the Higgs decay and at the Fermi LAT

Mayumi Aoki, Jisuke Kubo, Hiroshi Takano. N/A. 20 pp.

KANAZAWA-13-02

e-Print: arXiv:1302.3936 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record

5. Gamma-ray lines and One-Loop Continuum from s-channel Dark Matter Annihilations

C.B. Jackson, Geraldine Servant, Gabe Shaughnessy, Tim M. P. Tait, Marco Taoso. N/A. 32 pp.

e-Print: arXiv:1302.1802 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record

6. Searching for Spurious Solar and Sky Lines in the Fermi-LAT Spectrum

Daniel Whiteson, N/A, 7 pp.

e-Print: arXiv:1302.0427 [astro-ph.HE] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service

Detailed record

Outline

- I. Introduction
- II. The lines
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

Lines

Two lines, or not two lines?

$$E_{\gamma} = m_{\chi} \left(1 - rac{M_Y^2}{4m_{\chi}^2}
ight)$$

Lines!

$$m_x = 130$$
 $m_x = 145$ $E_Y = 130 (YY)$ $E_Y = 130 (YZ)$

Fun with titles

Two lines or not two lines? That is the question of gamma ray spectra

Arvind Rajaraman, Tim M.P. Tait and Daniel Whiteson

Analysis

 $m_x = 145$ $E_Y = 130 (YZ)$

 $m_x = 130$ $E_Y = 110 (YZ)$ $E_Y = 130 (YY)$

 $m_x = 130$ $E_Y = 130 (YY)$

Analysis

Rajaraman, Tait, DW

1205.4723

Outline

- I. Introduction
- II. The lines
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

Processes

Monochromatic Photons

Direct decay to photons, a line in photon energy spectrum

Continuum Photons

Annihilation to SM final states that shower into photons

Lisanti, IDM2012

Processes

Line feature

Broad spectrum

Processes

Continuum

Cohen et al 1207.0800

Three Exceptions for Thermal Dark Matter with Enhanced Annihilation to $\gamma\gamma$

Sean Tulin, Hai-Bo Yu, and Kathryn M. Zurek

Department of Physics, University of Michigan, Ann Arbor, MI 48109

(Dated: August 10, 2012)

Recently, there have been hints for dark matter (DM) annihilation in the galactic center to one or more photon

Gamma Lines without a Continuum:

Thermal Models for the Fermi-LAT 130 GeV Gamma Line

Yang Bai a,b and Jessie Shelton^c

Outline

- I. Introduction
- II. The lines
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

photons

Could the peak photons be spurious?
Are they different in some way?

First idea

isolate signal photons

Use energy cut

But

S/B is not large. Few signal photons.

Can we do better?

sPlots

discriminating variable

background

signal

data

sPlots

Discriminating variable

sPlots

(pdfs factorize)

discriminating variable

background

signal

data

sPlots

Given pdfs for two sources $f_1(y)$, and $f_2(y)$ in the discriminating variable y, one can construct a histogram in another unfolding variable x using weights for each source class, sP_1 and sP_2 , defined as:

$$sP_1(y) = \frac{\mathbf{V}_{11}f_1(y) + \mathbf{V}_{12}f_2(y)}{N_1f_1(y) + N_2f_2(y)}$$

$$sP_2(y) = \frac{\mathbf{V}_{21}f_1(y) + \mathbf{V}_{22}f_2(y)}{N_1f_1(y) + N_2f_2(y)}$$

where N_1 and N_2 are the number of events in each class, as extracted by a likelihood fit of f_1 and f_2 to the observed distribution in y, and the inverse of the matrix \mathbf{V} is a symmetric 2×2 matrix defined as

$$\mathbf{V}_{ab}^{-1} = \sum_{i=1}^{N} \frac{(N_1 + N_2)f_a(y_i)f_b(y_i)}{(N_1f_1(y_i) + N_2f_2(y_i))^2}$$

A histogram h in the unfolding variable x can then be constructed for source 1 as

$$h_i = \sum_{j=1}^{N_i} s P_1(y_{ji})$$

where i is the bin index in the x variable, N_i is the number of events in that bin, and y_{ji} is the value of the y variable for the jth event in the ith bin. A histogram for source 2 would be constructed by replacing $sP_1 \rightarrow sP_2$.

sPlots

$$f_{\text{peak}}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-5)^2} \times \frac{10-x}{50}$$

$$f_{ ext{non-peak}}(x,y) = rac{x}{50}$$

Results

- incident angle θ , measured with respect to the topface normal of the LAT,
- azimuth angle ϕ , measured with respect to the topface normal of the LAT, folded as described in Eq. (15) of Ref. [11].

variables

External issues?

Whiteson 1208.3677

 the magnetic field in which the LAT is immersed, as parameterized by the McIlwain B and L parameters [14],

Reconstruction

1st reported: Finkbiener, et al 1209.4562

Other sources

Earth's limb is a powerful control region.

Are there other regions?

Other sources

Earth's limb is a powerful control region.

Are there other regions?

The Sun!

Solar region

Find galactic coord of solar photons

Whiteson 1302.0427

Solar region

Find galactic coord of solar photons

Whiteson 1302.0427

Solar region

Find galactic coord of solar photons

Common features

(1) Find common values of instr. variables across peaks:GC / Limb / Sun

(2) Examine remainder of sky

Do those instrumental features produce a peak at 130?

DNA ...

Common features? Whiteson

1302.0427

theta

Whiteson 1302.0427

GC

Sun

Limb

Energy [GeV]

theta

Whiteson 1302.0427

GC

Gal. Center, θ∈ [30,45] deg

Sun

Limb

Sky-GC-Sun

theta

Whiteson 1302.0427

Theta [30,45]

Sun

3.5 2.5 1.5 0.5 90 90 100 110 120 130 140 150 160 170 18 Energy [GeV]

Limb

Limb, θ∈[30,45] deg

Sky-GC-Sun

200 - 150 - 100 -

Energy [GeV]

Discussion

Theta restriction

- reveals Limb peak, feature in Sky-GC-Sun
- reduces GC, Solar peaks

What is going on? One possibility:

- Energy-dependent efficiency in some theta-phi space
- Sun/Limb/GC sweep out different paths in theta-phi space
- -we see a hint in the sky spectrum just from theta if we could identify theta-phi region, might potentially enhance feature in sky

Simulation: GC

Simulation: GC

E>50

E>100

Background

Typical to assume a featureless power-law.

One test

Look away from DM density

<u>But</u>

Can that describe the GC?

more

FIG. 9: Time evolution of TS values. In dark (light) red we show results for the GC region from Tab. II (respectively Reg4 from Ref. [21]), in blue we show the evolution of the Earth limb line. The gray line indicates for comparison the TS value obtained for the Inner Galactic plane, where no signal is observed.

Symposium

The efficiency at \sim 115Gev is 0.57/0.75 = 75% of the MC prediction. This would imply a 30% boost in signal at 130 GeV relative to the prediction from nearby energy bins.

Eric Charles

Updated results

Outline

- I. Introduction
- II. The lines
- III. One line or two?
- IV. No continuum
- V. Instrumental studies
- VI. Source of the photons

Where are they from?

NFW density profile centered at $(\ell,b)=(-1.5^\circ,0^\circ)$

Finkbiener&Su 1206.1616

The photons

- + 125 < Reco E, < 135 GeV
- + 105 < Reco E_y < 115 GeV

Following results
use a 3-degree
circle. Results
are ~ the same for
larger regions

Locations

Zoom: 1 degree

Locations

Questions

- Are the two features consistent with emission from a single source?
- Are the features consistent with emission from a dark matter halo at the galactic center?

Questions

- Are the two features consistent with emission from a single source?
- Are the features consistent with emission from a dark matter halo at the galactic center?

Hypothesis tests

(I,b) fit far from GC

→ negative

$$q=-2\lograc{L(l=\hat{l},b=\hat{b})}{L(l=0,b=0)}$$
 (l,b) fit is close to 0,0

Questions

- Are the two features consistent with emission from a single source?
- Are the features consistent with emission from a dark matter halo at the galactic center?

Hypothesis tests

(I,b) fit far from GC

q → negative

$$q=-2\lograc{L(l=\hat{l},b=\hat{b})}{L(l=0,b=0)}$$

(I,b) fit is close to 0,0

q → zero

Hypothesis tests

separate fits are better

q → larger

joint fit is better

q → smaller

Locations

Conclusion:

The photon locations are easily consistent with a single DM halo at the GC

Hinchliffe's Rule

If the title is a question, the answer is 'no'.

IS HINCHLIFFE'S RULE TRUE? ·

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper is a question with a yes/no answer, the answer is always no. This paper demonstrates that Hinchliffe's assertion is false, but only if it is true.

Conclusions

Supporting evidence

Features

- strong stat power

Locations

- consistent with GC

No instrumental problems

- identified so far
- some hints in theta, B

Concerns

Background assumptions

- fair to assume featureless?

No Continuum

- requires some theory gymnastics

Limb, solar signals

- need resolution

Sensitivity

Whiteson 1208.3677

Discriminating var

Unfolding var

Background: flat

Signal: delta func at 0.5

Sensitivity

Whiteson 1208.3677

Discriminating var

Unfolding var

Background: flat

Signal: delta func at 0.5

Continuum

Lisanti, IDM2012

How much?

WW

$$R^{
m th} \equiv rac{\sigma_{
m ann}}{2\,\sigma_{\gamma\gamma} + \sigma_{\gamma_Z}}$$

Cohen et al 1207.0800

Large R: little YY+YZ
Small R: mostly YY+YZ

angles

Angles

Angles

Angles

